Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

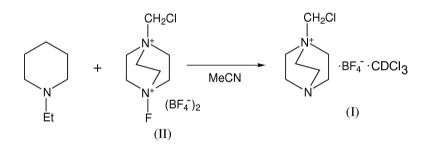
Andrei S. Batsanov,* Jelena Trmcic and Graham Sandford

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England

Correspondence e-mail: a.s.batsanov@durham.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.004 Å R factor = 0.040 wR factor = 0.095 Data-to-parameter ratio = 15.2


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-Chloromethyl-4-aza-1-azoniabicyclo[2.2.2]octane tetrafluoroborate deuterochloroform solvate

The title structure, $C_7H_{14}ClN_2^+ \cdot BF_4^- \cdot CDCl_3$, comprises 1-chloromethyl-4-aza-1-azoniabicyclo[2.2.2]octane cations, BF_4^- anions and CDCl₃ solvent molecules, each having C_s crystallographic symmetry. The cation has a staggered conformation and the anion and solvent molecule are connected *via* a $C-D \cdots F$ interaction. Received 18 January 2005 Accepted 8 February 2005 Online 19 February 2005

Comment

In the course of our studies of electrophilic fluorination methodology (Chambers *et al.*, 2004), 1-chloromethyl-4-aza-1azoniabicyclo[2.2.2]octane tetrafluoroborate deuterochloroform solvate, (I), was obtained as a by-product in the reaction of 'Selectfluor', (II), with *N*-ethylpiperidine. Compound (I) was obtained by recrystallization from deuterochloroform. The crystal structure of solvent-free 1-chloromethyl-4-aza-1azoniabicyclo[2.2.2]octane tetrafluoroborate has been reported previously by Banks *et al.* (1993).

The cation, anion and solvent molecule (Fig. 1 and Table 1) all lie on a crystallographic mirror plane, which passes through atoms Cl1/N1/N2/C1–C3 of the cation (which, therefore, has a staggered conformation around the N1–C1 bond), atoms B, F1 and F2 of the anion, and atoms C6, Cl3 and D of the deuterochloroform molecule. The solvent molecule and the anion are linked by a C6–D···F1 hydrogen bond (Table 2) The N–C bonds at quaternized atom N1 are longer by 0.047 (4) Å than at N2.

Experimental

A mixture comprising (II) (3.5 g, 12.1 mmol) and *N*-ethylpiperidine (1.0 g, 11.1 mmol) in acetonitrile was heated at reflux temperature 355 K for 18 h. The reaction mixture appeared dark red in colour. On completion of the reaction, the mixture was poured into water and extracted with dichloromethane (3×100 ml). The organic phase was dried with magnesium sulfate. After evaporation, the crude product was purified by distillation on a Kugelrohr apparatus. Crystals of X-ray quality were grown from a deuterochloroform solution of the non-volatile residue at room temperature.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystal data

 $C_7H_{14}CIN_2^+ \cdot BF_4^- \cdot CDCl_3$ $M_r = 368.84$ Orthorhombic, *Pnma* a = 22.368 (3) Å b = 8.4961 (11) Å c = 7.4726 (10) Å V = 1420.1 (3) Å³ Z = 4 $D_x = 1.725 \text{ Mg m}^{-3}$

Data collection

Bruker SMART 1K CCD areadetector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.672, T_{\max} = 0.950$ 16850 measured reflections

Refinement

J	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0364P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	+ 1.1232P]
$wR(F^2) = 0.095$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.21	$(\Delta/\sigma)_{\rm max} = 0.001$
2037 reflections	$\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^{-3}$
134 parameters	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$
All H-atom parameters refined	

Mo $K\alpha$ radiation

reflections

 $\begin{array}{l} \theta = 12.2 - 25.4^{\circ} \\ \mu = 0.86 \ \mathrm{mm^{-1}} \end{array}$

T = 120 (2) K

 $\begin{aligned} R_{\rm int} &= 0.045\\ \theta_{\rm max} &= 29.1^\circ \end{aligned}$

 $h = -30 \rightarrow 30$

 $k = -11 \rightarrow 11$

 $l = -10 \rightarrow 10$

Plate, colourless

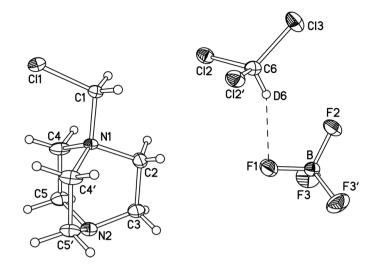
 $0.50 \times 0.20 \times 0.06 \ \mathrm{mm}$

2037 independent reflections 1760 reflections with $I > 2\sigma(I)$

Cell parameters from 884

Table 1

Selected	geometric	parameters	(Å,	°).
----------	-----------	------------	-----	-----


Cl1-C1	1.763 (3)	F1-B	1.388 (4)
N1-C1	1.507 (3)	F2-B	1.393 (4)
N1-C4	1.507 (2)	F3-B	1.381 (2)
N1-C2	1.510 (4)	Cl2-C6	1.767 (2)
N2-C3	1.456 (4)	Cl3-C6	1.759 (3)
N2-C5	1.464 (2)		
C1-N1-C4	111.96 (13)	N1-C1-Cl1	111.99 (18)
C1-N1-C2	107.0 (2)	N1-C2-C3	108.8 (2)
C4-N1-C2	108.54 (14)	N2-C3-C2	112.0 (2)
C3-N2-C5	108.94 (15)	N1-C4-C5	108.63 (17)
$C5-N2-C5^{i}$	108.2 (2)	N2-C5-C4	111.79 (17)

Symmetry code: (i) $x, \frac{1}{2} - y, z$.

Table 2

Hydrogen-bonding geometry (Å, °).

$\overline{D-\mathrm{H}\cdot\cdot\cdot A}$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C6-D6\cdots F1$	0.90 (4)	2.28 (4)	3.123 (4)	156 (3)

Figure 1

Twice the asymmetric unit of (I), showing atomic displacement ellipsoids (at the 50% probability level) and the D-F hydrogen bond (dashed line). Primed atoms are generated by the reflection operation $(x, \frac{1}{2} - y, z)$.

All H and D atoms were refined isotropically with C–H bond distances in the range 0.93 (3)–0.99 (3) Å and C–D distances of 0.90 (4) Å.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1999); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

We thank the Asahi Glass Co. (Japan) for funding (studentship to JT).

References

- Banks, R. E., Sharif, I. & Pritchard, R. G. (1993). Acta Cryst. C49, 492-495.
- Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). *SMART* (Version 5.060) and *SAINT* (Version 6.02A), Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SADABS. Version 2.03. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chambers, R. D., Holling, D., Sandford, G., Batsanov, A. S. & Howard, J. A. K. (2004). J. Fluorine Chem. 125, 661–671.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.